CANKAYA UNIVERSITY DEPARTMENT OF MATHEMATICS December 16, 2004

Math 395 Metric Spaces Midterm 2

Duration: 90 min.

Show all your work.

1. For each of the following statements, indicate whether the statement is true or false. If true give a proof. If false, give a counterexample.

a. (5 pts.) The set $\{(x, y) \mid x^2 + y^2 < 1\}$ is a complete subset of \mathbb{R}^2 .

b. (5 pts.) The set $\{(x, y) \mid x \leq y\}$ is a compact subset of \mathbb{R}^2 .

c. (5 pts.) The function $f : (0,1) \longrightarrow \mathbb{R}$ defined by f(x) = x is uniformly continuous.

d. (5 pts.) The set $\{(x, y) \mid x^2 + y^2 = 2\}$ is not compact.

e. (5 pts.) Let X be a set with the discrete topology. Then X is compact if and only if X is finite.

2. (15 pts.) If X, Y and Z are topological spaces, and $f : X \longrightarrow Y$ and $g: Y \longrightarrow Z$ are continuous functions, then prove that $g \circ f: X \longrightarrow Z$ (defined by $(g \circ f)(x) = g(f(x))$ for all $x \in X$ is continuous.

3. (15 pts.) Show that the open interval (a, b) is homeomorphic to (c, d). [Hint: $f(x) = \frac{d-c}{b-a}(x-a) + c$.] 4. Let X = (0, 1] be equipped with the usual metric d(x, y) = |x - y|.

a. (6 pts.) Show that (X, d) is not complete.

b. (6 pts.) Let $\widetilde{d}(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right|$ for $x, y \in X$. Show that \widetilde{d} is a metric on X.

c. (6 pts.) Show that \tilde{d} is equivalent to d,

d. (6 pts.) Show that that (X, \tilde{d}) is complete.

5. (20 pts.) If A and B are subsets of a metric space (X, d) such that A is closed and B is compact, show that $A \cap B$ is compact.